Final Exam
 Calculus I, Math 161, Fall 2022

Name:

Instructor: \qquad Section No.: \qquad

- This exam has 13 questions worth a total of 150 points. Please check that your exam is complete, but otherwise do not look at the exam until the official start.
- You have 120 minutes to complete this exam.
- Fill in your name, section, and instructor above.
- Technology of any kind is prohibited. The use of any notes is prohibited.
- Show your work. Correct work without corresponding work may not receive credit.
- You do not need to simplify answers unless specified otherwise. Some specific values of trig functions or e^{x} or $\ln (x)$ should be known.

Question	Points	Score
1	10	
2	12	
3	20	
4	12	
5	12	
6	12	
7	10	
8	10	
9	10	
10	12	
11	10	
12	8	
13	12	
Total:	150	

1. (10 points) True / False: Indicate True or False with a "T" or "F" (no partial credit).
(a) $-\frac{1}{x^{2}+9}$ has vertical asymptotes at $x=-3,3$.
(b) _ The limit definition of the derivative is $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(c) __ If $f(x)$ has a sharp corner at $x=a$, then $f^{\prime}(a)$ does not exist.
(d) $-\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{\ln (x)}$ is of indeterminate form.
(e) $-\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{2}^{x^{3}} \sqrt{5+t^{2}+t^{5}} d t\right]=\sqrt{5+x^{6}+x^{15}}$.
2. (12 points) Evaluate the following limits.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}$
(b) $\lim _{x \rightarrow-\infty} \frac{2 e^{x}-5}{3 e^{x}+7}$
(c) $\lim _{x \rightarrow 1^{+}} \frac{e^{x}-e}{\ln x}$
3. (20 points) Use the graph of the function $f(x)$ to answer the following questions:

Reminder: DNE is a valid possible answer.
(a) Find $f(5)$.
(b) Find $f^{\prime}(12)$.
(c) Find $\lim _{x \rightarrow 0} f(x)$.
(d) Is $f(x)$ continuous at $x=12$?
(e) List all horizontal asymptotes, or write NONE if there are none.
(f) State the x-value where a jump discontinuity occurs.
(g) Find an interval where $f^{\prime}(x) \geq 0$.
(h) Find an interval where $f^{\prime \prime}(x) \geq 0$.
(i) Mark all local maxima of $f(x)$ with a \times ("big X") on the graph.
(j) Is there a global maximum?
4. (12 points) Derivatives
(a) Find y^{\prime} for $y=\frac{\sin (x)}{\cos (x)}$
(b) Find y^{\prime} for $y=\left(x^{3}-x\right)^{5}$
(c) Find the second derivative $y^{\prime \prime}$ for $y=x^{7} e^{2 x}$
5. (12 points) You own a large sports apparel company, selling Rambler t-shirts. Accounting for all related costs and revenue, the profit in thousands of dollars is given by

$$
P(b)=-3+8 b-b^{2},
$$

where b represents the number of boxes, measured in thousands, of t-shirts produced.
(a) What is the net change of profit of the company if production increases from $b=1$ to $b=3$? Use appropriate units in your answer.
(b) What is the instantaneous rate of change of profit with respect to b when $b=3$? Use appropriate units in your answer.
(c) Based on your answer in Part (b), you can advise the printshop manager to: increase production, decrease production, or leave production levels unchanged at $b=3$. What would you advise? Justify your answer.
6. (12 points) The graph of the equation $x^{2}+x y=2 y^{2}+3$ is a hyperbola as shown below:

(a) Find y^{\prime} explicitly in terms of x and y.
(b) Find the equation of the tangent line at the point $(\sqrt{3}, 0)$.
7. (10 points) Find the point on the curve $y=2 \sqrt{x}$ that is closest to the point $\left(\frac{7}{2}, 0\right)$. Verify that the extremum found is a minimum by either the first or second derivative test.
8. (10 points) The volume of a cube is increasing at a rate of $10 \mathrm{~cm}^{3} / \mathrm{min}$. How fast is the surface area increasing when the length of an edge is 30 cm ?
[Recall if L is the length of an edge of the cube, the volume is $V=L^{3}$ and the surface area is $A=6 L^{2}$]
9. (10 points) Consider the function

$$
f(x)=\ln x
$$

(a) Find the linearization $L(x)$ of $f(x)$ at $x=3$.
(b) Find the third-order Taylor polynomial centered at $c=2$ for $f(x)$.
10. (12 points) Use the graph of $f^{\prime}(x)$ below to answer questions about the original function $f(x)$:

(a) Identify all critical numbers (the x-values are sufficient).
(b) Classify each critical number as corresponding to a local minimum, local maximum, or neither.
(c) On what intervals is $f(x)$ increasing? Leave your answer as open interval(s). For instance, $(1,2)$ means $1<x<2$.
(d) For what values of x does $f(x)$ have an inflection point?
11. (10 points) $f(x)$ is defined by the graph below:

(a) Consider $A=\int_{1}^{b} f(x) d x$ for $1<b \leq 6$. What value of b minimizes A ? Justify your response.
(b) Consider $\int_{4}^{6} f(x) d x$. Which of the following two approximations of this definite integral is larger, a left-hand Riemann sum or a right-hand Riemann sum? (Assume four equal sub-intervals for each.) Justify your response.
12. (8 points) Evaluate the following indefinite integrals:
(a) $\int \frac{5 x^{3}+3 x^{2}+2 x+1}{x^{2}} d x$
(b) $\int \frac{e^{3 x}}{1+e^{3 x}} d x$
13. (12 points) Evaluate the following definite integrals:
(a) $\int_{\pi / 6}^{\pi / 2} 1+\cos (x) d x$
(b) $\int_{-7}^{0} \sqrt{49-x^{2}} d x$ using geometry

